Gene expression analysis and urinary biomarker assays reveal activation of tubulointerstitial injury pathways in a rodent model of chronic proteinuria (Doxorubicin nephropathy).

Cianciolo R, Yoon L, Krull D, Stokes A, Rodriguez A, Jordan H, Cooper D, Falls JG, Cullen J, Kimbrough C, Berridge B.
Journal   Nephron Exp Nephrol.
Species  
Analytes Measured  
Matrix Tested  
Year   2013
Volume   124
Page Numbers   1-10
Application  
Abstract
Background: Tubular atrophy and interstitial fibrosis are well-recognized sequelae of chronic proteinuria; however, little is known regarding the molecular pathways activated within tubulointerstitium in chronic proteinuric nephropathies. Methods: To investigate the molecular mechanisms of proteinuria-associated tubulointerstitial (TI) disease, doxorubicin nephropathy was induced in rats. Progression of disease was monitored with weekly urinary biomarker assays. Because histopathology revealed multifocal TI injury, immunodirected laser capture microdissection was used to identify and isolate injured proximal tubules, as indicated by kidney injury molecule-1 immunolabeling. Adjacent interstitial cells were harvested separately. Gene expression microarray, manual annotation of gene lists, and Gene Set Enrichment Analysis were performed. A subset of the regulated transcripts was validated by quantitative PCR and immunohistochemistry. Results: Severe proteinuria preceded tubular injury biomarkers by 1 week. Histology revealed multifocal, mild TI damage at 3 weeks, which progressed in severity at 5 weeks. Affymetrix microarray analysis revealed tissue-specific regulation of gene expression. Manual annotation of gene lists, gene set enrichment analysis, and urinary biomarker assays revealed similarities to pathways activated in direct TI injuries. This suggests commonalities amongst the molecular mechanisms of TI injury secondary to proteinuria, ischemia-reperfusion, and nephrotoxicity.

View Publications
Browse Our Products

By Analytes
By Applications
Search
Meso Scale Japan 株式会社